Department of Astronomy

Navigation + Search
Home / Faculty and Staff Research / Graduate Student Research / Potential Graduate Student Projects

Potential Graduate Student Projects

A variety of projects are available for incoming graduate students to collaborate with faculty members on. Possibilities include:

with Paul Harding

How biased is the Sloan Digital Sky Survey Halo K giant sample?
Morrison, Harding, and Ma are using a sample of K giants from SDSS/SEGUE to study the halo of our galaxy. This sample is more than ten times larger than any previous sample and will provide important constraints on the formation of the outer halo. However to fully make use the SDSS K giant sample we need to understand how the properties of the K giants in the SEGUE sample are biased via their photometric selection, and spectroscopic observations.

We plan to observe a subsample of the SEGUE fields using Washington photometry on our Schmidt telescope on Kitt Peak. The reason for using Washington photometry is that its K giant selection biases are opposite of those of the SDSS ugriz photometry. This project will involve approximately a weeks observing at the Burrell Schmidt, processing of the data through to calibrated photometry. The properties of the K giants selected from the Washington photometry will then be compared to the sample of giants observed by SDSS in the same fields. This will allow us to test our existing bias correction techniques, and improve them if necessary.

with Earle Luck

Solar spectral synthesis
Spectrum synthesis is a basic tool for the determination of stellar abundances. Accurate syntheses require significant amounts of atomic and molecular data, much of which is inadequately known. Because of this requirement, detailed syntheses usually consider only limited wavelength regions. What is needed now is an order of magnitude increase in the number of accurately determined laboratory oscillator strengths and damping coefficients. This is not a realistic expectation in the near (5 year) term. What can be done is to exploit the Sun as a standard source. This project will re-determine solar line strengths from the Delbouille Solar Atlas and attempt to match the observed spectrum using the newly determined depths with the oscillator strength as the free parameter. A successful match will allow relative abundances to be determined for stars like the Sun from these newly matched regions.

with Stacy McGaugh

Mass modeling of disk galaxies
The masses of galaxies are fundamental quantities. This project seeks to constrain the stellar and dark mass of spiral galaxies with rotation curve data. This project will measure high resolution Halpha rotation curves from long slit spectroscopic observations and combine them with more extended HI rotation curves, then construct mass models and compute the effects of adiabatic contraction on the dark matter halo.

High redshift clusters of galaxies
A central question in extragalactic research is how galaxies evolve over time. At z ~ 1.7, the traditional optical bands shift into the near-infrared. This provides a window in which the evolution of the galaxy population can be studied with a minimum of uncertainty in K-corrections. Moreover, this redshift represents the earliest epoch at which clusters of galaxies are thought to emerge. Their masses constrain cosmology, as does the content of their galaxy populations: are galaxies young as the clusters form, or already well established in their own right? This project will analyze near-IR data from the Kitt Peak 4m to address these questions.

with Chris Mihos

Modeling the dynamical history of M101
Through a combination of our own deep imaging data and archival data from astronomical satellites, we have built up a comprehensive multiwavelength picture of the nearby giant spiral galaxy M101. However, understanding this data in an overall evolutionary context is necessary. This project would develop computer simulations of galaxy interactions to build a dynamical model of the M101 system subject to constraints from the multiwavelength datasets.

Searching for Light Echoes around the Crab Nebula
The Crab Nebula is the most studied supernova remnant, and has driven much of our understanding of supernova physics. By searching for “light echoes” — the illumination of material around the supernova remnant by the supernova itself — we have the potential of actually viewing the explosion itself, nearly 1,000 years after the star exploded. Such light echoes have not yet been detected around the Crab Nebula, but such searches have been limited. We can use the Burrell Schmidt telescope to do a complete areal survey around the Crab, searching for these light echoes and paving the way for follow-up spectroscopic studies using large telescopes.

with Heather Morrison

Measuring the size and shape of the thick disk
We have known that the Milky Way has a thick disk since the 1980s, but it has been quite hard to estimate reliable parameters for its spatial distribution. Previously astronomers used star counts, with the result that various parameters (like local density and scale height) are correlated and thus impossible to estimates separately. SEGUE now has a large sample of spectra, and the ability to accurately relate the properties of the stars with spectra to the entire sample of stars in the galaxy. For the first time, we can estimate properties like the scale height of the thick disk by using the spectroscopic results, and tie these into predictions for the formation of the thick disk.

with Heather Morrison and Paul Harding

Downsizing the Milky Way
Recent developments in computational power have given us the ability to model the structure of stars much more realistically than before, using 3D models to treat convection properly, and NLTE models to discard other assumptions that we were forced to make. The new models, however, predict that giant branch and horizontal branch stars are significantly fainter than our previous assumptions. If this is true, it will have profound effects on our estimates of the mass of the Milky Way. This project will involve a literature search to find how the known satellites of our Galaxy had distances measured, plus checks on the distance scale for horizontal branch stars, to see if this idea holds up. If it does, it could lead to a collaboration with an astronomer expert in measuring the mass of the Milky Way.

with Idit Zehavi

Large galaxy surveys such as the SDSS have greatly improved our understanding of large-scale structure and enable detailed studies of the clustering of galaxies and their implications on cosmological models, galaxy formation and evolution, and the relation between galaxies and dark matter. Possible related projects utilizing the SDSS data set:

Classification of central and satellite galaxies in observation
Central and satellite galaxies in the universe have distinct dynamical properties and distribution. However, it’s generally difficult to distinguish them in large-scale redshift surveys. We will aim to use their distinct clustering properties to develop a practical classification scheme.

Role of environment in galaxy formation
We will aim to investigate how different physical properties depend on the galaxies local and global environments. Galaxy clustering measurements on different scales may be helpful in distinguishing such different environments.

Page last modified: July 16, 2015